Evolutionary Genetics of an S-Like Polymorphism in Papaveraceae with Putative Function in Self-Incompatibility

نویسندگان

  • Timothy Paape
  • Takashi Miyake
  • Naoki Takebayashi
  • Diana Wolf
  • Joshua R. Kohn
چکیده

BACKGROUND Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone. METHODOLOGY/PRINCIPAL FINDINGS Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites. CONCLUSIONS/SIGNIFICANCE Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Self- incompatibility Alleles in Some Almond Genotypes by Degenerate S-RNase Primers

The almond, Prunus dulcis Miller which belongs to Rosaceae family, is one of the most important commercial and oldest cultivated tree nut crops. Almonds are classified as a ‘nut’ in which the edible seed is the commercial product. Therefore, pollination and fertilization are necessary in almond. The characteristic of cultivated almond to express gametophytic self- incompatibility discourages se...

متن کامل

Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata.

We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these gen...

متن کامل

Molecular characterization of Lal2, an SRK-like gene linked to the S-locus in the wild mustard Leavenworthia alabamica.

Single-locus sporophytic self-incompatibility inhibits inbreeding in many members of the mustard family (Brassicaceae). To investigate the genetics of self-incompatibility in the wild mustard Leavenworthia alabamica, diallel crosses were conducted between full siblings. Patterns of incompatibility were consistent with the action of single-locus sporophytic self-incompatibility. DNA sequences re...

متن کامل

Trans-specificity at loci near the self-incompatibility loci in Arabidopsis.

We compared allele sequences of two loci near the Arabidopsis lyrata self-incompatibility (S) loci with sequences of A. thaliana orthologs and found high numbers of shared polymorphisms, even excluding singletons and sites likely to be highly mutable. This suggests maintenance of entire S-haplotypes for long evolutionary times and extreme recombination suppression in the region.

متن کامل

Self-incompatibility: how plants avoid illegitimate offspring.

In some families of flowering plants, a single self-incompatibility (S) locus prevents the fertilization of flowers by pollen from the same plant. Self-incompatibility of this type involves the interaction of molecules produced by the S locus in pollen with those present in the female tissues (pistil). Until recently, the pistil products of the S locus were known in only two families, the Brass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011